	3 Lessons				3 lessons				3 lessons			
2 weeks commencing:	Chapter	Topic	10	Homework	Chaptel Topic		10	Homework	Chapter Topic		10	Homework
${ }^{0} 5$ September 2021	CP1-6	Matrices	1) Operations with matrices	Ex6A	CP1-1	Complex Numbers	1) Imaginary and complex num	Ex 14, 18	CP1-3	Series	1) Sum of natural numbers	Ex3A
			2) Matrix multiplication	Ex6B			numbers	Ex1C			2) Sum of squares and cubes	Ex 38
			3) Determinants of matrices	Ex 6 C			3) Complex conjugation	Ex 10			3) More complex cases (additio	Mixed Ex3
19 September 2021	${ }^{\text {CP1-6 }}$	Matrices	4) Inverses of 2×2 matrices	Ex 60	${ }^{\text {CP1-1 }}$	Complex Numbers	4) Roots of quadratic equations	Ex 1 E	CP1-8	Proof By Induction	1) Proof by imathematical nduc	Ex8A
			5) Inverses of 3×3 matrices	Ex6E			equations	Ex $1 F$			2) Proving divisibility results	Ex 8 B
			6/ Solving systems of equations	Ex6F	${ }_{\text {CP1-2 }}$	Argand Diagrams	Problem Solving	Mixed Exercise 1			3) Proving statements involving	Ex 8 C
${ }^{03} 0$ ctober 2021	CP1-6	Matrices	Exam Questions	Exam Questions	${ }^{\text {CP1-2 }}$	Argand Diagrams	1) Argand diagrams	Ex2A	$\begin{gathered} \text { CP1-31-3 } \\ \mathrm{CPP}-8 \end{gathered}$	Series \& Proof byInduction	CP1-388	Additional questions
	FM1	Impulse \& Momentum	1) What is an impulse and	Ex1A			2) Modulus and argument	Ex 28			Review of the assessment	Redrafting the assessm
			2) Conservation of momentum	Ex1B			3a) Modulus-argument form of	Ex 2 C	FS1	Discrete Random Variables	1)E(X) of DRV	Ex1A
170 Otober 2021	FM1	Impulse \& Momentum	3) Momentum as a vector	Ex1C	CP1-2	Argand Diagrams	3b) Multiplication and division c]		FS1	Discrete Random Variables	2) Var(X) of DRV	Ex1B

31 Octoer 2021	FM1	Impulse \& Momentum	4) Practice	Mixed Exercrise	CP1-2	Argand Diagrams	4a) Loci in the Argand diagram	Ex2E 1 1 to 09	FS1	Discrete Random Variables	4) Problem solving involving DR $\mathrm{Ex} \times \mathrm{x} 1 \mathrm{D}+$ Additional ques	
	A5	Friction (Maths Sow)	1) Resolving Forces	Ex 5 A			4b) Loci in the Argand diagram	Ex2F				
			2) Inclined planes	Ex 58			Problem Solving	Mixed exercise 2	FS2	Poisson Distribution	1) Introduction to Poisson distri\|	
${ }^{4}$ November 2021	${ }^{\text {A5 }}$	Friction (Maths Sow)	3) Friction	Ex 5 C	CP1-4	Roots of Polynomials	1) Roots of a quadratic equatior	4A	Fs2	Poisson Distribution	2) Using a calculator	Ex2B
	FM2	Work, Energy \& Power	1) Work Done	Ex2A Q $10-17$			2) Roots of a cubic equation	4B		Poisson Distribution	3) Modelling with the Poissond	Ex2C
			2) KE and GPE	Ex28 Q4-11			3) Roots of a quartic equation	Ex 4 C		Poisson Distribution	4) Adding Poisson distributions	Ex 2 D
28 November 2021	fM2	Work, Energy \& Power	3) Conservation of mechanical	Ex2C $01-10$	CP1-4	Roots of Polynomials	4) Expressions relating to the ro	Ex 4D	FS2	Poisson Distribution	5) Mean and variance ofa Poiss	Ex2E
			4) Conservation of mechanical	Ex2C Q $14-19$			5) Linear transformations of roc			Poisson Distribution	6) Mean and variance of the bin	Ex2F
			5) Power	Ex20 Q9-17			Revision of chapter 4 (test)	Mixed exercise 4		Poisson Distribution	7) Using the Poisson distribution	Ex 26
12 December 2021	FM2	Work, Energy \& Power	6) Practice	Mixed Exercise	CP1-7	$\begin{aligned} & \hline \begin{array}{c} \text { Transformations \& } \\ \text { Matrices } \end{array} \\ & \hline \end{aligned}$	1) Linear transformation in two	Ex7A	FS182			Odd numbered Qs in M
			7) Practice	Exam Qs			2) Reflections and rotations	Ex 78				Even numbered Q S in N
							End Of Autumn Term					
02.1 anuar 2022	FM4	Elastic Collisions	1) Coefficient of restitution	Ex4A Q1-5	CP1-7	Transformations \&Matrices	3) Enlargements and stretches	Ex7C	Fs4	Testi	1) Testing for the mean of a Poil	Ex4A
			2) Two particles colliding inequ	Ex4A Q6-10			4) Successive transformations	Ex 70			2) Finding critical regions for P	Ex4B
			3) Collision with smooth plane	Ex48			5) Linear transformations in thri	Ex7E			3) Practice with exam style que:	Mixed Ex4
16, Janary 2022	FM4	Elastic Collisions	4) Loss of kinetic energy 1	Ex4C Q1-7	CP1-7	Transformations \& Matrices	6) The inverse of a linear transt.	Ex7F		PPE Revision	Series and Proof by induction	Additional materials
			5) Loss of kinetic energy 2	Exac 08.14			Revision of chapter 7	Mixed ecercise 7		PPE Revision	DRV and Poisson distribution	Additional materials
			Revision	Exam Questions			Revision of chapter 7	Exam Questions		PPE Revision	Poisson distribution and hypot	dditional materials
${ }^{30}$ anauar 2022	FM4	Elastic Collisions	Year 12 PPE 1				Year 12 PPE 1				Year 12 PPE 1	
			(6) Three particles 1	Exad Q1-5			\|PPE Feedback				PPE Feedback	

20 februar 2022	FM4	Elastic Collisions	7) Three particles 2	Ex4D Q6-9	CP1-9	Vectors \& 30 Space	1) Equation of a line in three dir	Ex9A	FS6	Chi-squared Tests	1) Goodness of fit	Ex6A	
			8) Pratice	Mixed Exercise			2) Equation of a plane in three c	Ex98			2) Degrees of freedom and th	Ex6	
			9) Practice	Exam Questions			3) Scalar product	Ex9C			3) Testing a hypothesis	Ex6C	
06 March 2022	CP1-5	Roots of Polynomials	1) Roots of quadratic equations	Ex4A	CP1-9	Vectors \& 30 Space	${ }^{4)}$ Calculating angles between li	Ex90	FS6	Chi-squared Tests	4) Testing the goodness of fit w	Ex6D	
			2) Roots of Cubic equations	Ex4B			5) Points of intersection	Ex 9 E			5) Degrees of freedom and the.	Ex6E	
			3) Roots of Quartic equations	Ex4C			6) Finding perpendiculars (1)	Ex9F			6) Review of chi-squared tests	Mixed Ex6	
20 March 2022	CP1-5	Roots of Polynomials	$\begin{aligned} & \text { 4) Expressions for the roots of } p \text { Ex } 4 \mathrm{D} \\ & \text { 5) Linear transformations of rooq } \mathrm{Ex} 4 \mathrm{E} \\ & \hline \end{aligned}$		${ }^{\text {CP1-9 }}$	Vectors \& 30 Space	7) Finding perpendiculars (2)	Ex9F	FS3	Geometric and negative binomial distributions	1) The geometric distribution	Ex 34	
					$\frac{\text { Revision of chapter } 9}{\text { Problem Solving }}$		Mixed exercis 9	2) Mean and variance of a georn					
			Revision \& Re-teaching	Targeted Practice									

17 Apili 202		Revision \& Re-teaching	Targeted Practice	${ }_{\text {CP1-2 }}^{\text {CP1-1 }}$	Revision	Review exercise 1	$\begin{aligned} & \text { FS3 } \\ & \text { F54 } \\ & \hline \end{aligned}$	Geometric and negative binomial distributions Hypothesis Testing	4) Mean and variance of the ned Ex 3 D	
		Revision \& Re-teaching	Targeted Practice		Revision				5) Challenging word-based prob	Mixed Ex 3 and Integral
		Revision \& Re-teaching	Targeted Practice		Revision				3) Hypothesis testing for the pa	Ex4C
${ }^{1} 1$ May 2022		Revision \& Re-teaching	Targeted Practice	CP1-4CP1-7	Revision	Revewew exercrise 2	F54	Hypothesis Testing	4) Finding Critical regions for a	Ex4C
		Revision \& Re-teaching	Targeted Practice		Revision			Chisquared Tests	6) Applying goodness-of.fit test	Ex6F
		Revision \& Re-teaching	Targeted Practice		Revision				Review	
15 May 2022		Revision \& Re-teaching	Targeted Practice	CP1-9	Revision	Review exercis 2	Fs3,4,6		Assessment	
		Revision \& Re-teaching	Targeted Practice		Solve past papers	Past papers			Review of the assessment	Redrafting the answers
		Revision \& Re-teaching	Targeted Practice						Revision \& Re-teaching	Targeted Practice

05			Revision \& Re-teaching	Targeted Practice			Revision \& Re-teaching	Targeted Practice			Revision \& Re-teaching	Targeted Practice
			Revision \& Re-teaching	Targeted Practice			Revision \& Re-teaching	Targeted Practice			Revision \& Re-teaching	Targeted Practice
	Year 12 End Of Year Exams				Year 12 End Of Year Exams				Year 12 End OF Year Exams			
19 une 2022	$\begin{gathered} \text { c9\& } \\ \text { c11 } \end{gathered}$	Calculus Methods	1) Chair rule	Ex 9 C	$\begin{gathered} \text { c9 \& } \\ \mathrm{Cl1} \end{gathered}$	Calculus Methods	1) Quotient rule	Ex 9 E	$\begin{gathered} \text { c9 \& } \\ \text { c11 } \end{gathered}$	Calculus Methods	1) Reverse chain rule	Ex 110
03.14 l 2022			2) Differentiating $\sin x, \cos x$, In				2) Integrating $f\left(\begin{array}{l}\text { a }\end{array}\right.$ b b	${ }_{\text {Ex } 118}^{\text {Ex } 11 \mathrm{C}}$			2) Integration by substitution	Ex 11E
-3102			Year 12 Work Experience				Year 12 Work Experiene			Year 12 Work Experience		

